The Manganese-55 NMR Spectra of Phosphine Substituted Phosphinothioformamide Carbonylmanganese Complexes, $MnSC(NR)PPh_2(CO)_{4-n}(PZ_3)_n^+$

DIETER REHDER*, VOLKER PANK

Institut für Anorganische Chemie der Universität, Martin-Luther-King-Platz 6, D-2 Hamburg 13, F.R.G.

UDO KUNZE and ANDREAS BRUNS

Institut für Anorganische Chemie der Universität, Auf der Morgenstelle 18, D-74 Tübingen, F.R.G.

Received December 4, 1984

We have recently reported the classification of carbonyl manganese complexes containing *P*, *S*-chelating ligands, based on specific shift ranges in the ⁵⁵Mn NMR spectra [2, 3]: δ (⁵⁵Mn) values for MnSC(NR)PR'₂(CO)₄ are around -1570 ppm, while shielding of the ⁵⁵Mn nucleus in the halide complexes XMnSC(NR)PR'₂(CO)₃ (-730 to -190) and XMnSMeC(NR)PR'₂(CO)₃ (-270 to +70 ppm) is substantially less and shows a normal halogen dependence, *i.e.* an increase in the order X = Cl < Br < I.

Deshielding effects in metal NMR have also been observed with carbonyl transition metal complexes as the strongly π -accepting CO is substituted by phosphine ligands PZ₃, and interpreted in terms of decreasing overall π interaction. Among the systems which have been thoroughly investigated are the pseudo-octahedral complexes $[V(CO)_{6-n}(PZ_3)_n]^{-1}$ [4-7] and Mo(CO)_{6-n}(PZ₃)_n [8-11], where the $|\delta(^{51}V)|$ and $|\delta(^{95}Mo)|$ values decrease with increasing n, increasing bulk of the phosphine, and with decreasing electronegativity of Z. On the other hand, it has been shown that $|\delta(^{55}Mn)|$ in the complexes [Mn(CO)₅PZ₃]⁺ may also increase with respect to the parent carbonyl, possibly affected by an expansion of the Mn(3d) cloud due to enhanced Mn(3d) \rightarrow CO(π^*) donation, an effect which, in this case, is dominant over the decrease in the overall π interaction [5, 12]. In the present work, which deals with the phosphine derivatives of $MnPS(CO)_4$ (PS = Ph₂PC(NR)S⁻⁻), a trend is noted which again conforms with the findings in carbonyl vanadium and molybdenum complexes.

Table I contains the chemical shift values $\delta({}^{55}Mn)$. Substitution of one CO by PZ₃ at room temperature leads to *fac*-[MnPS(CO)₃PZ₃] (PZ₃ = P(OR)₃, PHPh₂, PMePh₂, PClPh₂, PEt₃) which, upon warming, slowly rearrange $(PZ_3 = P(OR)_3, PMePh_2, PEt_3)$ to the thermodynamically more stable mer-[MnPS(CO)3- PZ_3]. In some cases ($PZ_3 = PCy_3$, PPh_3), only the meridional isomer is observed [13]. The meridional isomers give rise to broad (half widths $W_{1/2}$ several KHz) signals shifted to low field of the resonance position of $MnPS(CO)_4$ by up to *ca*. 200 ppm (Z = Ph). In the facial isomers, the ⁵⁵Mn nucleus is further deshielded (a comparable observation has been reported for the pairs $mer/fac-[Mo(CO)_3 \{P(OMe)_3\}_3]$ [8, 14]), and this trend prevails as two CO groups are replaced by trimethylphosphite. The general ordering (identical phosphine ligands provided) hence is $[MnPS(CO)_4] > mer \cdot [MnPS(CO)_3PZ_3] > fac \cdot [MnPS (CO)_3PZ_3 > cis [MnPS(CO)_2(PZ_3)_2]$. Superimposed to this trend are effects arising from the nature of Z. The phosphine induced manganese shielding decreases in the sequence $P(OMe)_3 > P(OPh)_3 > PHPh_2$ $> PEt_3 \approx PCy_3 > PMePh_2 > PPh_3 > PClPh_2$ which should be interpreted in terms of decreasing ligand strength of the phosphine on a magneto-chemical π acceptor scale. Except for the position of PHPh₂, this is again in accord with findings in comparable Mo and V systems. An extreme low-field position of the PPh₂Cl derivative on the $\delta(M)$ scale has also been observed for the complexes $cis [Mo(CO)_4(PPh_2Z)_2]$ [15].

The complexes fac-[MnPS(CO)₃PZ₃] exhibit relatively sharp signals (W_{1/2} around 600 Hz; an exception is the PClPh₂ complex). This is indicative of comparatively low relaxation rates. The 55Mn nucleus (spin 5/2) has a nuclear quadrupole moment of ca. 0.5×10^{-28} m², and relaxation is governed by the quadrupole mechanism. Only where the 55 Mn nucleus is in a cubic environment, quadrupole relaxation becomes ineffective, and very sharp signals are observed $([MnO_4]^-, [Mn(CO)_6]^+)$. The point charge model predicts that the nuclear field gradient also vanishes for pseudo-octahedral C_{3v} complexes (fac-[MA₃B₃]). Although our complexes [MnPS(CO)₃PZ₃] with a facial arrangement of the three CO ligands are far from falling into this category, we might nonetheless expect a considerable sharpening of the resonance lines with respect to the isomers, where the CO groups occupy meridional positions, and in fact the differences in $W_{1/2}$ are about one order of magnitude.

In agreement with theory, further line narrowing occurs as the molecular reorientation is facilitated by decreasing the viscosity of the solution. In two cases $(fac-[MnPS(CO)_3P(OPh)_3]$ and $[MnPS(CO)_2]-{P(OMe)_3}_2]$) we have thus been able to observe ${}^{1}J({}^{55}Mn-{}^{31}P)$ coupling by running the spectra at elevated temperatures. For the triphenylphosphite complex, a structured signal (J(Mn-P(OPh)) = 400 Hz, J(Mn-PPh)) (only partially resolved) *ca.* 140 Hz)

© Elsevier Sequoia/Printed in Switzerland

[†]Part XV of 'Phosphine-Substituted Chelate Ligands'; for Part XIV see ref. [1].

^{*}Author to whom correspondence should be addressed.

TABLE I. $\delta(^{55}Mn)$ Data^a.

Complex	δ(⁵⁵ Mn) (ppm)	
	298 to 300 K	333 to 335 K
[MnSC(NPh)PPh ₂ (CO ₄)] ^b	-1530	
mer-[MnSC(NPh)PPh2(CO)3PPh3]	-1400 ^c	
fac-[MnSC(NPh)PPh2(CO)3P(OMe)3]	-1481	<i>—1433</i>
$[MnSC(NMe)PPh_2(CO)_4]^b$	-1545, -1570	
mer-[MnSC(NMe)PPh ₂ (CO) ₃ PZ ₃]		
$PZ_3 = P(OMe)_3$	-1534	
P(OPh) ₃	-1516	
PEt ₃	-1496	-1432
PCy ₃	- 1457	
PMePh ₂	-1370	
PPh ₃	-1345	
fac-[MnSC(NMe)PPh2(CO)3PZ3]		
$PZ_3 = P(OMe)_3$	-1477	<i> 1450</i> ^d
P(OPh) ₃	-1431 ^e	$-1414^{f,g}$
PHPh ₂	-1437	-1395 ^d
PEt ₃	-1381 ^d	<i>–1340</i> ^d
PMePh ₂	-1302	$-1264^{\mathbf{d}}$
PClPh ₂	-1090	
cis -[MnSC(NMe)PPh ₂ (CO) ₂ {P(OMe) ₃ } ₂]	-1319	-1261 ^g

^aValues in italics are from a Bruker WH 90 PFT spectrometer at 22.31 MHz (error ± 2 ppm), others from a Bruker SWL 3-100 wide-line spectrometer (central field $B_0 = 1.518$ T; 16.0 MHz; error ± 20 ppm). All data are in THF solution (*ca*. 0.05 M) and relative to $[MnO_4]^-$ ($B_{MnO_4^-} = 1.51688$ T). ^bFrom refs. [1] and [2]. ^c ± 50 ppm. ^dCoupling incompletely resolved. ^eAt 305 K. ^fAt 320 K. ^gCoupling resolved; *cf.* text.

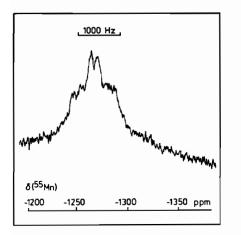


Fig. 1. 22.31 MHz ${}^{55}Mn{}^{1}H{}$ NMR spectrum of *cis*-[MnSC(NMe)PPh₂(CO)₂ {P(OMe)₃}₂] at 333 K in THF.

arises. For $[MnPS(CO)_2 \{P(OMe)_3\}_2]$, the coupling pattern is more complex (Fig. 1): a pseudo-triplet (J(Mn-P(OMe)) = 405 Hz) with a doublet splitting (J(Mn-PPh) = 165 Hz) of each of the triplet lines is observed for this ABXM system $(A, B = P(OMe)_3, X = Ph_2PC(NMe)S^-)$ at 333 K. Manganese coupling has formerly only been observed in a few $[Mn(CO)_{6-n} (PZ_3)_n]^+$ complexes (*e.g.* n = 1, $PZ_3 = PMePh_2$: J = 170 Hz; n = 2, Z = OMe; J = 330 Hz [5, 7, 12]).

Another interesting feature is the strong temperature dependence of $\delta({}^{55}Mn)$ which amounts to 1.2 ppm/deg. The ${}^{55}Mn$ nucleus is deshielded as the temperature increases, which is the expected trend [16]: the increase of the occupation of vibronic levels with increasing temperature is, in its effect, comparable to a decrease of the ligand field strength as a weakly interacting ligand (PR₃) is introduced into the complex.

References

- 1 U. Kunze, H. Jawad, W. Hiller and R. Naumer, Z. Naturforsch., submitted.
- 2 D. Rehder, R. Kramolowsky, K. G. Steinhäuser, U. Kunze and A. Antoniadis, *Inorg. Chim. Acta*, 73, 243 (1983).
- 3 U. Kunze, A. Bruns and D. Rehder, J. Organomet. Chem., 268, 213 (1984).

- 4 D. Rehder and J. Schmidt, J. Inorg. Nucl. Chem., 36, 333 (1974).
- 5 D. Rehder, H.-Ch. Bechthold, A. Keçeci, H. Schmidt and M. Siewing, Z. Naturforsch., Teil B:, 37, 631 (1982).
- 6 H. Schmidt and D. Rehder, Transition Met. Chem., 5, 214 (1980).
- 7 D. Rehder, Magn. Reson. Rev., 9, 125 (1984).
- 8 G. T. Andrews, I. J. Colquhoun, W. McFarlane and S. O. Grim, J. Chem. Soc., Dalton Trans., 2353 (1982).
- 9 A. F. Masters, G. E. Bossard, T. A. George, R. T. C. Brownlee, M. J. O'Connor and A. G. Wedd, *Inorg. Chem.*, 22, 908 (1983).
- 10 G. M. Gray, Inorg. Chim. Acta, 81, 157 (1984).
- 11 E. C. Alyea and A. Somogyvari, 'Chemical Uses of Molybdenum,' Proc. 4th Int. Conf. Golden, Col., 1982, p. 46.
- 12 A. Keçeci and D. Rehder, Z. Naturforsch., Teil B., 36, 20 (1981).
- 13 A. Bruns, Ph. D. Thesis, University of Tübingen, 1984.
- 14 P. Jaitner and W. Wohlgenannt, Mh. Chem., 113, 699 (1982).
- 15 G. M. Gray and C. S. Kraihanzel, *Inorg. Chem.*, 22, 2959 (1983).
- 16 R. Freeman, G. R. Murray and R. E. Richards, Proc. R. Soc. London, Ser. A:, 242, 455 (1957).